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Analysis of stochastic resonances
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We investigate the one-dimensional diffusion of a particle in a piecewise linear potential superimposed with
a step of a harmonically modulated height. Employing the matching conditions, we solve the corresponding
Fokker-Planck equation and we analyze nonlinear features of the particle’s mean position as a function of time.
We present detailed results in two physically relevant cases. First, we take the unperturbed potential as a
symmetrical up-oriented tip, which is placed between two reflecting boundaries and we add the jump at the tip
coordinate. The setting yields resonancelike behavior of the stationary-response amplitude. Second, if the
discontinuity at origin is combined with the constant force in the symmetrical region between the boundaries,
the stationary response displays a time-independent shift against the potential slope. The driving-induced force
exhibits a resonance-like behavior both with respect to the diffusion constant and the slope of the unperturbed
potential.
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I. INTRODUCTION

The dynamical behavior of an overdamped Brownian p
ticle acted upon by the thermal force and moving in a fix
potential landscape is a well understood classical prob
@1–3#. However, in the last decade, the diffusion dynam
has been reexamined in systems in which the potential
pends on time, the modulation being due to additional~de-
terministic @4# and/or stochastic@5#! dynamical mechanism
@6#. The new achievements have substantially broadened
field. References@7,8# are two of the recent reviews whic
discuss history, applications, and existing literature wit
the domain.

In a paradigmatic setting, consider a particle which d
fuses in a potential profile and which is additionally act
upon by a harmonically oscillating force. Then the who
potential landscape changes in time and the correspon
dynamical equation cannot be solved in closed form. O
has to invoke an appropriate approximation which typica
assumes a separation of time scales. However, the mos
teresting phenomena within this domain are just based
time-scale matching conditions and their description requ
a nonperturbational approach. Any exactly solvable diffus
model with a time-dependent potential is of a considera
value even if it is only as a test of existing approximati
treatments.

In the present paper, we have two objectives. First, on
methodological side, we want to examine a different a
proach, which allows for a detailed analysis of a broad cl
of diffusion problems with time-dependent potentials. In th
approach, the price paid for the exact solutions is a simpli
implementation of the external driving. We assume that
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time-dependent perturbation influences the original poten
just within a very narrow region around a given point.
brief, we add a step with time-dependent height. It will
shown that such a device still keeps all the pertinent asp
of the diffusion dynamics. The results are valid for any for
of time-dependent function which controls the step hei
~this function represents the input signal!.

Our second objective is the detailed analysis of two phy
cally relevant problems. First, we assume a symme
double-well unperturbed potential. Adding a harmonica
modulated barrier at the origin, we have all ingredien
needed in a generic stochastic-resonance model. Due to
above simplified implementation of the driving process,
are able to calculate the exact~nonlinear! response of the
system. The response, which is the mean particle’s posit
is not only sensitive to the noise level, but it also displa
resonancelike features with respect to the parameters o
unperturbed potential.

In many situations the unperturbed potential has no ce
of reflection symmetry. For example, in the studies of t
noise-induced transport in Brownian ratchets@4#, the sym-
metry breaking has been identified as a key cause for ge
a directed probability current. In our second example,
consider tworeflecting boundaries, symmetrically locate
with respect to the origin, and a linear potential in betwe
Obviously, in a time-independent potential, the mean coo
nate relaxes to a definite temperature-dependent equilibr
value. However, it is nota priori clear what happens if we
add the harmonically modulated barrier at the origin. In t
model, we have disclosed a phenomenon, which does
seem to be covered in the existing literature; namely,
external driving with zero time average induces anonzero
time-averaged shift of the mean coordinate. The shift is o
ented against the unperturbed potential slope. Differen
speaking, a definite portion of the external-field energy
trapped within the system. Symmetric input is combin
©2003 The American Physical Society09-1
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with the diffusion dynamics and produces an effective fo
which ‘‘elevates’’ the particle against the potential force.

The paper is organized as follows. In Sec. II, we introdu
the Green function formulation of the problem and we der
basic equations. The basic frame is quite general, i.e.,
calculation is valid for any unperturbed potential and for a
form of the input signal. The reading will be useful for r
searchers wishing to apply the modulated-step device in t
own settings. The focus here is on the Green function
represents a complete description of the diffusion proc
Starting at Sec. III, we restricted the analysis just on
particle’s mean position~the output signal!. Here we have
derived our most original results concerning the above
specific diffusion problems. We give formulas describing t
output and its dependence on the input frequency and am
tude, on the temperature, and on the parameters of the
perturbed potential. The focus is on resonancelike aspec
the output amplitude and of the above driving-induced for

II. GENERAL POTENTIAL WITH A TIME-DEPENDENT
DISCONTINUITY

In the Brownian-motion-type notation, the Fokker-Plan
equation for the Green functionG(x,y;t) reads

]

]t
G~x,y;t !52

]

]x H 2D
]

]x
G~x,y;t !

2
1

G F]U~x;t !

]x GG~x,y;t !J . ~1!

HereU(x;t) is the potential, i.e.,F(x;t)52(]/]x)U(x,t) is
the corresponding force. The curly-bracketed expression
resents the probability currentJ(x,y;t). G equals the particle
mass times the viscous friction coefficient. The thermal-no
strength parameterD increases linearly with the temperatur
D5kBT/G. The initial conditions are imposed at timet0
50, i.e., we require lim

t→01G(x,y;t)5d(x2y). Boundary
conditions will be discussed below.

A. Unperturbed problem and its solution

Let U1(x) and U2(x) be two arbitrary time-independen
and space-continuous potentials. Without any loss of ge
ality, assume that they coincide atx5s, i.e., U1(s)
5U2(s). As the first preparatory step, consider a combin
space-continuous potential

U (0)~x!5U1~x!@12Q~x2s!#1U2~x!Q~x2s!, ~2!

where Q(x) is the right-continuous unit-step function
Q(x)51 for x>0 andQ(x)50 for x,0. The analysis of
the diffusion in this potential will be referred to as theun-
perturbedproblem. Its solution consists in finding the Gre
function G(0)(x,y;t), which solves Eq.~1!, and in calculat-
ing the corresponding probability currentJ(0)(x,y;t). The
problem must be supplemented by some boundary co
tions. Typically, one assumes a definite type of bound
conditions, e.g., reflecting or absorbing conditions, at t
pointsx1,s andx2.s.
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The construction of the unperturbed Green function i
well-known procedure. However, in order to introduce
appropriate frame for our main problem, we now revise
calculation in the following four steps.

The basic ingredients are the Green functionsBi(x,y;t)
and the corresponding probability currentsCi(x,y;t) for the
two problems with the potentialsUi(x), i 51,2. At x1, the
function B1(x,y;t) is required to fulfill the same boundar
condition as that prescribed for the functionG(0)(x,y;t).
Moreover, one assumes that the natural boundary cond
lim

x→1`
B1(x,y;t)50. Similarly, B2(x,y;t) and

G(0)(x,y;t) have to fulfill the same boundary condition
x2, and moreover, one requires lim

x→2`
B2(x,y;t)50. The

first step consists in the calculation of the functio
Bi(x,y;t), andCi(x,y;t), i 51,2.

The second step starts by assuming an appropriate an
for the Laplace transformsG(0)(x,y;z) and J(0)(x,y;z).
Here and below, we always use the notationf (z) for the
Laplace transformation of a time-dependent functionf (t);
for clarity, the variables will be always quoted. The prop
form of the ansatz depends on the relative positions of
points x, y, and s. For example, if xP(x1 ;s) and y
P(x1 ;s), the assumed form will be designated
G11

(0)(x,y;z), if xP(x1 ;s) and yP(s;x2), we introduce
G12

(0)(x,y;z), etc. Using this convention, the ansatz reads

G11
(0)~x,y;z!5B1~x,y;z!1B1~x,s;z!Q11

(0)~s,y;z!, ~3!

G12
(0)~x,y;z!5B1~x,s;z!Q12

(0)~s,y;z!, ~4!

G21
(0)~x,y;z!5B2~x,s;z!Q21

(0)~s,y;z!, ~5!

G22
(0)~x,y;z!5B2~x,y;z!1B2~x,s;z!Q22

(0)~s,y;z!. ~6!

Here Qi j
(0)(s,y;z) are the four functions to be specified b

low. Analogous relations express the assumed form of
probability currentJi j

(0)(x,y;z); we simply replaceBi(x,y;z)
and Bi(x,s;z) on the right-hand sides~RHS! by Ci(x,y;z)
andCi(x,s;z), respectively.

In the third step, one invokes the matching conditio
G(0)(s2e,y;t)5G(0)(s1e,y;t) and J(0)(s2e,y;t)5J(0)(s
1e,y;t), which guarantee the continuity of the probabili
density and of the probability current at the pointx5s. Here
e is a positive infinitesimal parameter. In the following, w
always implicitly assume the limite→0 whenever the limit
yields a well-defined analytical behavior of the resulting e
pression. Inserting the ansatz~3!–~6! into the matching con-
ditions, one ends with the matrix equation

S b1~s;z! 2b2~s;z!

g1~s;z! 2g2~s;z!
D S Q11

(0)~s,y;z! Q12
(0)~s,y;z!

Q21
(0)~s,y;z! Q22

(0)~s,y;z!
D

5S 2B1~s,y;z! B2~s,y;z!

2C1~s,y;z! C2~s,y;z!
D . ~7!

Here we have introduced the abbreviationsb1(s;z)5B1(s
2e,s;z), b2(s;z)5B2(s1e,s;z), g1(s;z)5C1(s2e,s;z),
and g2(s;z)5C2(s1e,s;z). These four functions shall be
9-2
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called the matching functions. In fact, they describe th
original diffusion processes@i.e., those with the potential
Ui(x), i 51,2] in the vicinity of the pointx5s. Note that
their combination

x~s;z!52
b1~s;z!g2~s;z!

b2~s;z!g1~s;z!
. ~8!

displays an extremely important property; namely,x(s;z)
51 if and only if the pointx5s represents the center o
reflection for the unperturbed problem. Actually, in this ca
one hasb1(s;t)5b2(s;t) andg1(s;t)52g2(s;t).

It is now a matter of simple algebra to solve the mat
equation~7! for Qi j

(0)(s,y;z). Performing this fourth step
one arrives at the final form of the Laplace-transformed
perturbed Green function:

G11
(0)~x,y;z!5B1~x,y;z!1

B1~x,s;z!

11x~s;z!H 2
x~s;z!

b1~s;z!
B1~s,y;z!

2
1

g1~s;z!
C1~s,y;z!J , ~9!

G12
(0)~x,y;z!5

B1~x,s;z!

11x~s;z! H 1
x~s;z!

b1~s;z!
B2~s,y;z!

1
1

g1~s;z!
C2~s,y;z!J , ~10!

G21
(0)~x,y;z!5

B2~x,s;z!

11x~s;z! H 1
1

b1~s;z!
B1~s,y;z!

1
x~s;z!

g2~s;z!
C1~s,y;z!J , ~11!

G22
(0)~x,y;z!5B2~x,y;z!1

B2~x,s;z!

11x~s;z! H 2
1

b2~s;z!
B2~s,y;z!

2
x~s;z!

g2~s;z!
C2~s,y;z!J . ~12!

B. Time-dependent discontinuity

We now supplement the unperturbed potential~2! with a
time-dependent discontinuity atx5s. The height of the step
will be controlled by a prescribed function, sayUs(t). Alto-
gether, we are faced with the diffusion problem in the tim
dependent potential~the factor 2 on the RHS is introduce
for later convenience!

U~x;t !5@U1~x!12Us~ t !#@12Q~x2s!#1U2~x!Q~x2s!.
~13!

We want to calculate the Green functionG(x,y;z) which
solves Eq.~1! with potential~13!.

The first two steps of this calculation are identical as
fore. We assume the form~3!–~6! with Gi j (x,y;z) and
Qi j (s,y;z), instead ofGi j

(0)(x,y;z) andQi j
(0)(s,y;z), respec-

tively. The matching condition for the probability current
06610
,
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again J(s2e,y;t)5J(s1e,y;t) and can be immediately
Laplace transformed. However, as for the probability dens
the jump condition@9# implies the relationshipG(s2e,y;t)
5j(t)G(s1e,y;t), with j(t)5exp@22Us(t)/(kBT)#. Here
comes the principal difficulty. The latter condition cannot
easily Laplace transformed and the subsequent analysis
be carried out in the time domain. Henceforth we express
jump conditions using the time-dependent form of the ans
This yields a matrix integral equation

E
0

tS b1~s;t2t8! 2j~ t !b2~s;t2t8!

g1~s;t2t8! 2g2~s;t2t8!
D

3S Q11~s,y;t8! Q12~s,y;t8!

Q21~s,y;t8! Q22~s,y;t8!
D dt8

5S 2B1~s,y;t ! j~ t !B2~s,y;t !

2C1~s,y;t ! C2~s,y;t ! D . ~14!

Of course, it is always possible to writej(t)512@1
2j(t)# on the both sides of the equation and thus introdu
a partitioning of the unknown functionsQi j (s,y;t)
5Qi j

(0)(s,y;t)1Qi j
(1)(s,y;t). The perturbed part will be pro

portional to@12j(t)#, i.e., it will vanish for the continuous
potential. The unperturbed part is known from the preced
section. Hence it is possible to derive the integral equati
for the perturbed matrixQ(1)(s,y;t) alone. Two of the four
ensuing equations do not depend onj(t). They can still be
Laplace transformed and then used to eliminate two
known functions. Namely, we have

Q21
(1)~s,y;z!5

g1~s;z!

g2~s,z!
Q11

(1)~s,y;z!,

Q22
(1)~s,y;z!5

g1~s;z!

g2~s,z!
Q12

(1)~s,y;z!. ~15!

After the elimination, the problem is reduced to the soluti
of just two Volterra integral equations of the second kin
Introducing the transformations

W1~s,y;z!52b1~s;z!
11x~s;z!

x~s;z!
Q11

(1)~s,y;z!,

W2~s,y;z!52b1~s;z!
11x~s;z!

x~s;z!
Q12

(1)~s,y;z!, ~16!

the integral equations assume a fairly compact final form

Wi~s,y;t !2f~ t !E
0

t

c~s;t2t8!Wi~s,y;t8!dt8

5f~ t !Ri~s,y;t !. ~17!

The kernel K(t,t8)5f(t)c(s;t2t8) is a product of two
functions. The first onef(t)5tanh@Us(t)/(kBT)# is the only
function through which the time-dependent jump of the p
tential enters all the subsequent results. This function a
modulates the RHS of the integral equation.
9-3
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The Laplace transform of the second factor reads

c~s;z!5
@12x~s;z!#

@11x~s;z!#
5

b2~s;z!g1~s;z!1b1~s;z!g2~s;z!

b2~s;z!g1~s;z!2b1~s;z!g2~s;z!
.

~18!

This combination of the matching functions describes
asymmetry of the unperturbed problem. In problems wit
center of reflection, one hasx(s;z)51, and hencec(s;t)
50. In these situations, the solution of the integral equat
collapses toWi(s,y;t)5f(t)Ri(s,y;t).

On the RHS of the integral equation, Eq.~17!, we have
introduced the functions

R1~s,y;z!5
1

11x~s;z! H B1~s,y;z!2
b1~s;z!

g1~s;z!
C1~s,y;z!J ,

~19!

R2~s,y;z!5
x~s;z!

11x~s;z! H B2~s,y;z!2
b2~s;z!

g2~s;z!
C2~s,y;z!J .

~20!

Finally, the transformations~16! have also invoked modifi-
cations of the functionsBi(x,s;z) in the ansatz equations
The final result~see below! will be formulated by means o
the twox-dependent functions

V1~x,s;z!52
2x~s;z!

11x~s;z!

B1~x,s;z!

b1~s;z!
,

V2~x,s;z!5
2

11x~s;z!

B2~x,s;z!

b2~s;z!
. ~21!

Let us now summarize the main results of the pres
Section. The target Green function has been partitioned

Gi j ~x,y;t !5Gi j
(0)~x,y;t !1E

0

t

dt8Vi~x,s;t2t8!Wj~s,y;t8!.

~22!

The unperturbed part describes the diffusion dynamics
the space-continuous time-independent potential~2!. Its
Laplace transformation is given by the formulas~9!–~12!.
The Laplace transformation of the perturbed part can
written as a product of two factors, i.e.,Gi j

(1)(x,y;z)
5Vi(x,s;z)Wj (s,y;z). Here Wi(s,y;t), i 51,2, are solu-
tions of integral equation~17!, andVj (x,s;z) are defined in
Eqs. ~21!. The results are valid for any form of the unpe
turbed potential and for any time-dependent step-he
function Us(t).

III. LINEAR POTENTIALS, REFLECTING BOUNDARIES,
AND HARMONIC PERTURBATION

One of our motivations for the present study was an ex
analysis of the nonlinear response with respect to the
monically modulated input signal. In our setting, the inp
signal is the step-height functionUs(t). Hence, starting from
this point, we take it asUs(t)5K cos(vt), with K being the
amplitude andv the angular frequency. Thereupon, the fun
06610
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tion f(t) in the integral equation~17! assumes the form
f(t)5tanh@k cos(vt)#. Here the dimensionless parameterk
5K/(kBT) measures the temperature-reduced amplitude
the input signal and will be considered as the perturbat
parameter. The functionf(t) can be expanded in powers o
the parameterk. However, it is also possible to write it as
sum of odd harmonics. Actually, we have

f~ t !5 (
k51

`

fk~k!cos~vkt !

5Fk2
k3

16
1

k5

192
2¯Gcos~vt !

1F2
k3

48
1

k5

384
2¯Gcos~3vt !1¯, ~23!

with vk5(2k21)v. Note thek expansion of the ampli-
tudesfk(k) starts with the term proportional tok2k21.

In connection with the above mentioned focus of t
present paper we now introduce three additional assu
tions. First, the discontinuity will be placed at the origin, i.e
we sets50. In order to make the following formulas mor
transparent, we skip quoting the dependence ons. Thus, e.g.,
x(s;z) in Eq. ~8! and c(s;t) in Eq. ~17! will be written as
x(z) andc(t), respectively. Second, we shall introduce tw
reflecting boundaries at the coordinatesx152 l 1,0 andx2
5 l 2.0, i.e., the diffusion will be restricted to two neighbo
ing domains of generally different widths, located to the l
and to the right of the origin. Third, we take the potentia
Ui(x) in Eq. ~2! to be linear, possibly with different slopes
This means that, while diffusing within the left~right! re-
gion, the particle is acted upon with aconstant force F1
(F2). For example, ifl i→`, i 51,2, andF152F2.0, the
unperturbed problem represents the diffusion in a V-sha
continuous potential with the tip located at the origin.

At this point, a brief comment is needed concerning o
third assumption. The idea of using the piecewise linear
tential to study noise-induced phenomena has been explo
by several authors. Diffusion dynamics in the tim
independent piecewise linear potential has been studied,
in @10–12#. Using the Laplace-transform method, these pro
lems, including various types of boundaries, are analytica
tractable. The calculation is more involved, if the slope of t
linear potential depends on time. The additional influen
can be eithercoherent~e.g., an external sinusoidal driving!
or stochastic~e.g., an intrinsic random modulation of th
potential profile!. In the first case, one possible approa
operates with the powerful Floquet theory together with
eigenfunction treatment of the unperturbed problem@13#.
Another possibility would be an approximation of the sin
soidal signal by a piecewise constant periodic function@14#.
Anyway, typically, the coherent-driving models with linea
potentials are not analytically solvable. As for the stochas
modulation of the linear-potential slope, the setting is oft
assumed in the analysis of the resonant-activation phen
enon @15–19#. In these problems, again, the Laplac
transform method usually leads to exact results. The stra
we shall adopt in the remainder of this paper is as follow
9-4
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The generic features of the problems with coherently mo
lated slopes of the linear potentials are preserved if the slo
are fixed and, instead, if one modulates the discontin
connecting the different slopes. The idea of the tim
modulated discontinuity has been used in Refs.@20# and
@21#. However, these authors operate with piecewise cons
potentials ~zero slope! and they invoke a perturbationlik
treatment of the step-modulation amplitude.

Let us now incorporate these assumptions into the eq
tions of the preceding section. We need two Green functi
Bi(x,y;t), and two probability currentsCi(x,y;t), i 51,2 for
the two linear potentialsUi(x)52Fix. As for the potential
U1(x), we assume the reflecting boundary atx152 l 1 and
the natural boundary at plus infinity. Similarly, for the diffu
sion in the potentialU2(x), we place the reflection boundar
at x25 l 2 and the natural boundary at minus infinity. Th
following formulas display the Laplace transformations
the needed functions.

B1~x,y;z!5D1~x,y;z!1
1

2Da1~z!

a1
2~z!

a1
1~z!

3l1~z!e2xa1
2(z)e2ya1

1(z), ~24!

B2~x,y;z!5D2~x,y;z!1
1

2Da2~z!

a2
1~z!

a2
2~z!

3l2~z!exa2
1(z)eya2

2(z), ~25!

C1~x,y;z!5E1~x,y;z!1
1

2a1~z!

3a1
2~z!l1~z!e2xa1

2(z)e2ya1
1(z), ~26!

C2~x,y;z!5E2~x,y;z!2
1

2a2~z!
a2

1~z!l2~z!exa2
1(z)eya2

2(z).

~27!

Here a i(z)5Az/D1ai
2, ai5Fi /(2DG), a i

6(z)5a i(z)
6ai , and l i(z)5exp@22liai(z)#. The Green functions
Di(x,y;z), i 51,2 and the probability currentsEi(x,y;z)
are solutions of two problems with linear potentialsUi(x)
52Fix and with natural boundary condition
lim

x→6`
Di(x,y;t)50. Thus, Di(x,y;t) simply describes

the spreading probability-density packet whose center d
with constant velocity Fi /G. By Laplace transforming
the corresponding Fokker-Planck equations and then sol
the emerging ordinary differential equation one easily o
tains

Di~x,y;z!5
1

2Da i~z!
$Q~y2x!e2(y2x)a i

1(z)

1Q~x2y!e2(x2y)a i
2(z)%, ~28!
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Ei~x,y;z!5
1

2a i~z!
$2Q~y2x!a i

2~z!e2(y2x)a i
1(z)

1Q~x2y!a i
1~z!e2(x2y)a i

2(z)%. ~29!

Moreover, we shall need the four matching functions wh
appear above Eq. 8. Their present forms read

b1~z!5
1

2Da1~z! F11
a1

2~z!

a1
1~z!

l1~z!G , ~30!

b2~z!5
1

2Da2~z! F11
a2

1~z!

a2
2~z!

l2~z!G , ~31!

g1~z!52
a1

2~z!

2a1~z!
@12l1~z!#, ~32!

g2~z!5
a2

1~z!

2a2~z!
@12l2~z!#, ~33!

and therefore their combination~8! is

x~z!5
@a1

1~z!1a1
2~z!l1~z!#@12l2~z!#

@a2
2~z!1a2

1~z!l2~z!#@12l1~z!#
. ~34!

Note that this function actually equals unity if and only if th
two regions have the same width, i.e.,l 15 l 2, and the slopes
of the linear potentials within these regions are opposite,
F152F2.

The functions~23!–~34! yield everything that is needed i
the integral equation~17!. We assume, for the moment, th
the integral equation has been solved, i.e., we know the
sulting Green functionG(x,y;t). Then we have the complet
information about the diffusion process. For example, o
can inquire, what portions of the total probability mass a
at a given time, situated on the right~on the left! from the
origin. However, remembering again our main objective,
shall concentrate on the calculation of the particle’s me
position m(y;t)5*

2 l 1

l 2 dx x G(x,y;t). This function will be

referred to as theoutput signal. Using the partitioning~22!,
the output signal splits asm(y;t)5m (0)(y;t)1m (1)(y;t).
The unperturbed part relaxes to a given value which is d
tated by Gibb’s equilibrium distribution; namely, thi
temperature-dependent value is

ms
(0)5 lim

t→`

m (0)~y;t !5

E
2 l 1

l 2
dx xexp@2U (0)~x!/~kBT!#

E
2 l 1

l 2
dx exp@2U (0)~x!/~kBT!#

.

~35!

The potentialU (0)(x) is piecewise linear and hence the equ
librium mean position can be easily evaluated.

As for the perturbed part, the results from the preced
section lead to the expression
9-5
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m (1)~y;t !5E
0

t

dt8F E
2 l 1

0

dx xV1~x;t2t8!

1E
0

l 2
dx xV2~x;t2t8!GWi~y;t8!
su
tw
y

i.e
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5E
0

t

dt8M ~ t2t8!Wi~y;t8!, ~36!

with Vi(x;z) being given in Eqs.~21!. The result of the
x-integration reads
M ~z!5
2D

z

a1
2~z!1a1

1~z!l1~z!22a1~z!e2 l 1a1
1(z)

12l1~z!
1

a2
1~z!1a2

2~z!l2~z!22a2~z!e2 l 2a2
2(z)

12l2~z!

a1
1~z!1a1

2~z!l1~z!

12l1~z!
1

a2
2~z!1a2

1~z!l2~z!

12l2~z!

. ~37!
s no
i-

n.
We have quoted this complex expression because all the
sequent results rest on the asymptotic analysis of the last
formulas. Typically, the perturbed part of the output displa
transitory effects superimposed with the stationary part,
m (1)(y;t)5m trans

(1) (y;t)1ms
(1)(t). In the time-asymptotic re-

gion, the transitory part vanishes and the whole output
sumes its stationary formms(t)5ms

(0)1ms
(1)(t). The station-

ary output will be shown to display quite remarkab
features.

A. Stochastic resonance

Assume l 15 l 25 l and F152F25F. The unperturbed
potential forms a symmetric tip at the origin. The tip poin
down ~up! for F positive~negative!, i.e., we can speak abou
V potential (L potential! with the minimum~maximum! at
the origin. Let us concentrate, for the moment, on the
directed tip~all the calculation below is valid for an arbitrar
sign of the force!. Then the linear potentials at both sides
the origin together with the reflecting barriers mimic
double-well symmetric potential. Adding the time-depend
discontinuity at the origin, we are faced with an archetypi
stochastic-resonance setting@7#. During each half period
when the step-height functionUs(t) is positive ~negative!,
the discontinuity acts as a potential barrier for the diffus
trajectories approaching it from the right~from the left!. In
our setting, the height of the barrier will harmonically osc
late and Fig. 1 illustrates the space and the time depend
of the whole potential.

As mentioned above, in the present setting, the origin r
resents a center of reflection for the unperturbed probl
Consequently, the unperturbed equilibrium probability de
sity is an even function and the equilibrium mean posit
ms

(0) in Eq. ~35! vanishes. Second, the functionx(z) in Eq.
~17! vanishes also and Eqs.~36! simply read

m (1)~y;t !5E
0

t

dt8M ~ t2t8!f~ t8!R~y;t8!

5 (
k51

`

fk~k!E
0

t

dt8M ~ t2t8!cos~vkt8!R~y;t8!.

~38!
b-
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Here we have already inserted the expansion~23!.
In order to simplify the notation, we introducea(z)

5Az/D1a2, with a5F/(2DG), a6(z)5a(z)6a, and
l(z)5exp@22la(z)#. Hence, comparing with the text below
Eq. ~27!, we have a1

6(z)5a6(z), a2
6(z)5a7(z), and

l1(z)5l2(z)5l(z). Using all this in Eq.~37!, we get

M ~z!5
2D

z

a2~z!1l~z!a1~z!22a~z!e2 la1(z)

a1~z!1l~z!a2~z!
.

~39!

Performing a detailed analysis, one can prove that there i
pole of this function at the origin of the complex plane. F
nally, in the present case, the functions~19! and ~20! are
identical, i.e.,R1(y;z)5R2(y;z), their common form being

R~y;z!5
1

2z

a1~z!e2uyua2(z)1a2~z!l~z!euyua1(z)

12l~z!
.

~40!

This function displays the first-order pole at the origi

FIG. 1. The time-modulated potentialU(x;t) as considered in
this section. We tookl 51m, F521N, v52p rad s21, and K
50.5 J. The two darker planes atx56 l are the two reflecting
walls. The central plane atx50 m is included for clarity.
9-6
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We now turn to the calculation of the convolution integr
in Eq. ~38!. Upon writing cos(vkt) as a sum of two exponen
tials, the formula~38! can be Laplace transformed and w
arrive at the problem of the asymptotic behavior of a fun
tion which is known to have first-orders poles atz56 ivk
due to the termsR(y;z6 ivk). Introducing an appropriate
contour in the complex plane and applying the residu
theorem@22#, one can separate the transitory part of the
sults~this emerges from the integrals along both sides of
negative imaginary axis! and the oscillatory part~stemming
from the residua at the poles!. The latter part already repre
sents the stationary output signal. Skipping all details,
final result of the present section reads

ms~ t !5 (
k51

`

Ak~v!cos@vkt2Ck~v!#. ~41!

In words, the time-asymptotic output signal contains the f
damental frequency and its odd harmonics. The amplit
Ak(v) is proportional to the perturbation factorfk(k). Apart
from this dependence, the amplitudes and the phase shift
controlled by just two generic functions which are evalua
at the equidistant pointsvk . More precisely, we have

Ak~v!5fk~k!
a

12e22la
uM ~ ivk!u,

sinCk~v!52
Im@M ~ ivk!#

uM ~ ivk!u
, cosCk~v!5

Re@M ~ ivk!#

uM ~ ivk!u
,

~42!

Re@M (z)# and Im@M (z)# being the real and the imaginar
part of the function~39!, respectively. The combinatio
2l uau5 l uFu/(kBT) represents the~negative! temperature-
reduced height of the potential tip for the unperturbed pr
lem.

Remembering that thek expansion of the functionfk(k)
begins with the powerk2k21, Eqs.~41! and~42! contain the
linear-response output. Actually, in the linear response,
terms withk.1 in Eq. ~41! are not considered and, in th
first term, we takef1(k)'k. Thus the linear response
simply given by phase-shifted oscillations with the fund
mental frequency. We now write the linear-response am
tude in a form which will be well suited for a further analy
sis. The form reads

A( lr )~v!5
4K

uFu H J2

exp~J!21J
3H 1

Q Uã21l̃ã122ã exp~2ã1/2!

ã11l̃ã2 UJ
5

4K

uFu
A1~J!A2~J,Q!. ~43!
06610
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Here ã5AJ21 iQ, ã65ã6sgn(F)J, and l̃5exp(2ã).
We have introduced two important dimensionless para
eters. First, J52l uau5 l uFu/(kBT) represents the
temperature-reduced height of the potential barrier~for F
,0) or the temperature-reduced depth of the potential w
~for F.0). In the former case, the parameterJ controls the
Kramers timetK for surmounting the unperturbed potenti
barrier. More precisely, the Kramers time is proportional
exp~J! @10#. Second, the parameterQ54l 2v/D reflects the
ratio between the time scale for the potential modulati
tv}1/v, and the time scaletD} l 2/D for the diffusive
spreading within the spatial domain (2 l ; l ). For example, if
Q@1, the external modulation is rapid with respect to t
diffusion, if Q!1, the driving is slow~the adiabatic limit!.
Equation~43! describes a nontrivial competition between
the three time scales. Further discussion will be given bel

To illustrate our results, in Fig. 2, we shall first focus o
the particle’s mean position and present several typical
tures. The data were obtained by the numerical Laplace
version of the functionsR(y;z), Eq. ~40!, and M (z), Eq.
~39!, followed by the numerical evaluation of the convol
tion integral in Eq.~38!.

As follows from the preceding calculation, ifk@1, the
output displays highly nonlinear features. In the strong dr
ing regime, the coefficientsfk(v) are not negligible and
thus the output contains higher harmonics. This can be
seen in the spectral analysis of the output. Let us brie
discuss the four panels in Fig. 2.

Panel ~a! demonstrates a typical form of the transito
effects. Of course, they are not present in the linear-respo
curve, as this curve is already calculated in the asympto
time limit. Panel~b! compares two curves evaluated for th
two different temperatures. The remaining parameters w
tuned in such way, that the comparison shows up the stoc
tic resonance effect; namely, byincreasingthe temperature,
there occurs a synchronization between the temperat
induced interwell transitions and the input signal. As a res
the amplitude of the periodic outputincreases. No such in-
crease can occur in theV-potential model. Panel~c! demon-
strates that the increase of the output amplitude can
occur by increasing the unperturbed barrier height. FoF
negative, this is not surprising as the increase of the poten
barrier uFu l is effectively equivalent with a decrease of th
temperature. Panel~d! displays typical differences betwee
the diffusionV-shaped andL-shaped unperturbed potentia
In the first case, there is no potential barrier and hence
instantaneous, e.g., positive, value of the inputUs(t)
5K cos(vt) leads to an immediate motion of the probabili
mass to the right. Contrary to this, having a potential bar
in the unperturbedL potential, the stationary output display
a significant phase delay with respect to the input.

Let us now return to the discussion of resonances. O
analysis will be based on Eq.~43! and we consider, first, the
caseF,0 ~i.e., theL-shaped unperturbed potential!. On the
RHS we recognize a product of two functions. The first o
A1(J)5J2/(exp(J)21), displays maximum at the poin
J! which solves the equation 12exp~2J!5J/2, i.e., J!

P(1,2). If we treatA1(J) as a function of the noise inten
9-7
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FIG. 2. Time dependence of the particle’s mean position. In all panels, the input frequency isv52p rad s21, G51 kg s21, and the
initial position is y520.3 m. Panel~a! compares the exact solution~full curve! with the corresponding linear-response result~broken
curve!. For both the curves, the parameters areD51.0 m2 s21, F520.5 N, l 52.0 m, andK51.0 J. Panel~b! demonstrates the increase
the output amplitude with increasing temperature. The full line hasD51.0 m2 s21, and the broken oneD53.0 m2 s21. Otherwise, we took
F520.5 N, l 51.0 m, andK510.0 J. Panel~c! exemplifies the increase of the output amplitude with increasing the unperturbed b
height. Here we setF520.05 N ~full curve! and F5210.0 N ~broken curve!. Otherwise, we useD51.0 m2 s21, l 50.3 m, andK
510.0 J. Panel~d! illustrates typical differences between the dynamics in the monostable and in the bistable model. The ful
corresponds toL-shaped potential withF525.0 N, and the broken one toV-shaped potential withF510.0 N. Both curves haveD
51.0 m2 s21, l 50.6 m, andK510.0 J.
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sity, the maximum occurs at D!, where D!

P( l uFu/(2G),l uFu/G). The valueD! does not depend on th
frequency of the potential modulation. However, due to
second factor in Eq.~43!, the position of the maximum of the
productA1(J)A2(J,Q) is shifted with respect to the abov
value,D!. Actually, the second factorA2(J,Q) is a com-
plicated function of the two variables indicated~they both
are inversely proportional toD), but it displays finite non-
zero limits

lim
D→`

A2~J,Q!5
1

8
, lim

D→0
A2~J,Q!5

F2

2l 2v2G2 UsinS lvG

2uFu D U.
~44!

On the whole, the linear response amplitude~43! displays
maximum at some point, say atDsr(v). Heuristically, if
v,0.5 ~v.0.5!, the true maximumDsr(v) is shifted with
respect toD! towards lower~higher! values of the noise
intensity. There is no simple analytical relation which wou
describe this frequency dependence. Qualitatively, the hig
06610
e

er

the frequency~the lower the period of the driving signal!, the
higher Dsr(v), i.e., also the lower Kramers timetK . We
thus recover the basic condition for theD-stochastic reso-
nance@7#: the statistical synchronization occurs when t
average waiting time between two noise-induced interw
transitions is comparable to the period of the driving sign

Figure 3 shows the linear-response amplitude as a fu
tion of the temperature and the slope of the unperturbed
tential. A similar peak has also been detected if the amplit
is displayed as a function of the widthl. Generally speaking
besides on the frequency, the output amplitude depend
all further parameters, i.e., onK, F, DG5kBT, andl. At the
same time, due to the rather complicated structure of
~43!, the analytic expressions for the maxima would not
very illustrative.

The resonance inD occurs only ifF,0. Contrary to this,
keeping the temperature and the other parameters cons
the resonance inF can occur also for a positiveF. The physi-
cal essence behind this effect is as follows. We assume fi
sharp slope of theV-shaped unperturbed potential. Due to t
large ‘‘attractive’’ force, the particle cannot migrate far fro
the origin and the amplitude of its mean-position oscillatio
9-8



e
rg
cu
ey
io
-

he
ai
or
o

f
b

oa

r

f
g

fin
u
it

in
o

ex

en

is
of
e
-
he

he

l

of

he

nc-
on

di

-

ANALYSIS OF STOCHASTIC RESONANCES PHYSICAL REVIEW E68, 066109 ~2003!
is small. Second, we assume a flat minimum of the unp
turbed potential. Then the particle performs relatively la
excursions from the origin. However, the excursions oc
symmetricallyto both sides from the origin and hence th
do not contribute to the mean position. Only a small port
of the probability density in the vicinity of the origin is non
symmetrically affected by the oscillating barrier. On t
whole, the amplitude of the particle’s mean position is ag
small. In conclusion, there must exist an ‘‘optimal’’ slope f
which the amplitude assumes its maximal value. This reas
ing will only be valid if the width of the diffusion domain is
sufficiently large.

The resonance peak in the variablel has a similar origin.
We assume a negativeF and a smalll. Then, because o
purely geometrical reasons, the output amplitude must
small. In the opposite case, i.e., assuming a sufficiently br
diffusion regionuau l @1, a significant part of the probability
mass issymmetricallydistributed in domains that are fa
from the origin~i.e., close to the reflection boundaries!. Only
a small portion of the probability density in the vicinity o
the origin is nonsymmetrically affected by the oscillatin
barrier. The corresponding contribution to the integral de
ing the mean position is also small. In conclusion, there m
be an optimal width for which the amplitude assumes
maximal value. For positiveF this reasoning goes to certa
critical value of the collecting force. Above this value, n
resonance inl occurs.

All these heuristic conclusions were confirmed by the
plicit evaluation of the output amplitude~43!.

B. Driving-induced force

In this section, we take againl 15 l 25 l , but now letF1
5F25F. Figure 4 illustrates the space and the time dep
dence of the potential in this case.

FIG. 3. The linear-response amplitude as a function of the
fusion constantD and the potential slopeF. In the calculation, we
took the amplitude of the step-height functionK50.001 J, the
frequency of the time-dependent potential contributionv
50.5 rad s21, and the half-width of the whole diffusion regionl
50.3 m. For a positiveF, i.e., for theV-shaped unperturbed poten
tial, there is no resonance with respect to the variableD.
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Therefore the potential for the unperturbed problem
simply a straight line in the symmetric diffusion domain
total width 2l . If F,0 (F.0), the force pushes the particl
against the left~right! boundary. The equilibrium mean po
sition for the unperturbed problem is given below, c.f., t
first term on the RHS of Eq.~50!. It is an odd function of the
force, and it has the same sign asF. What happens if we add
the oscillating discontinuity at the origin? One feels that t
stationary response should again display some~nonlinear!
oscillations. However, aroundwhatvalue? This is the centra
question of the present section.

ProvidedFÞ0, the unperturbed problem has no center
reflection symmetry, the combination~34! is no longer zero,
and we are faced with the integral equation~17! in their full
form. We start again by calculating the present form of t
function ~37!. Introducing a(z)5Az/D1a2, with a
5F/(2DG), a6(z)5a(z)6a, and l(z)5exp@22la(z)#,
we havea1(z)5a2(z)5a(z), a1

6(z)5a2
6(z)5a6(z), and

l1(z)5l2(z)5l(z). Using all this in Eq.~37!, we arrive at
a quite transparent expression

M ~z!5
2D

z F12
cosh~ la !

cosh@ la~z!#G . ~45!

A detailed analysis shows that there is no pole of this fu
tion at the origin. Next, focusing on the integral equati
~17!, on the RHS we have

Ri~y;z!5
1

2z

a7~z!1l~z!a6~z!

a~z!@12l2~z!#
@a6~z!e2uyua7(z)

1a7~z!l~z!euyua6(z)#, ~46!

where the upper~the lower! sign is valid for i 51, i.e.,

f- FIG. 4. The time-modulated potentialU(x;t) as considered in
this section. We tookl 51 m, F521 N, v52p rad s21, and K
50.5 J. The two darker planes atx56 l are the two reflecting
walls. The central plane atx50 m is included for clarity.
9-9
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P. CHVOSTA AND P. REINEKER PHYSICAL REVIEW E68, 066109 ~2003!
y,0 ~for i 52, i.e., y>0). Finally, the expression~18! in
the kernel of the integral equation~17! reads@22#

c~z!52
a

a~z!
tanh@ la~z!#⇒c~ t !

52sgn~a!Da2
e2Da2t

ApDa2t

3F112(
n51

`

~21!nexpS 2n2
l 2

Dt D G . ~47!

The kernel displays att50 a weak singularity of the form
c(t)}1/ApDt.

We now start with the iterative solution of the integr
equation~17!. Formally, let the kernel be proportional to
parameter, sayz. Then the Neumann series for the solution
(k50

` Wi ,(k)(y;t), whereWi ,(k)(y;t)}zk. The zero-order term
is simply given by the right of the integral equation, i.e
Wi ,(0)(y;t)5f(t)Ri(y;t). Inserting this term in Eq.~36! and
using the same steps as in the preceding section, we
again a sum of odd harmonics, their amplitudes being p
portional tofk(k). At the same time, this is the only term
which contributes to the linear-response output@the explicit
form of the linear-response output is given in Eq.~52! be-
low#.

Next, let us consider the first iteration of the integr
equation. We integrate the kernelK(t,t8) multiplied by the
zero-order resultWi ,(0)(y;t). Inserting the mode expansio
of the functionf(t), we have to calculate

Wi ,(1)~y;t !5 (
m51

`

(
n51

`

fm~k!fn~k!cos~vmt !

3E
0

t

dt8c~ t2t8!cos~vnt8!Ri~y;t8!. ~48!
d

th
th

06610
et
-

l

Here comes the crucial point. We write again the functi
cos(vmt) and cos(vnt8) as sums of two exponentials, and w
carry out the Laplace transformation. The terms withmÞn
have poles atz5 ivm6 ivn . Asymptotically, they contribute
to the oscillatory part of the output. However, one part of t
diagonalm5n terms leads to the compensation of the tw
pole shifts in the expressionRi(y;z6 ivm6 ivn). As a result,
these terms will have pole at the origin of the complex pla
Inserting these terms into the convolution in Eq.~36! and
using the residuum theorem, we end with an asymptotic
surviving, nonoscillatory term

s(1)~v!5
l

2cosh2~ la !
(

m51

`

fm
2 ~k!Re@c~ ivm!#. ~49!

The lower index reminds that we are discussing the con
bution which is linear in the parameterz. However, at the
same time, the expression is even in the perturbation par
eterk. Its k expansion starts with thequadraticcontribution.

In a similar way, we can analyze the higher-order ite
tions of the integral equation. Without going into details,
us now collect all the findings into one final formula. In th
present symmetry-broken setting, the stationary output sig
reads

ms~ t !5 l Fcoth~2la !2
1

2laG1 (
k51

`

s(2k)~v!

1 (
k51

`

Sk~v!cos@kvt2Fk~v!#. ~50!

The first term is the equilibrium mean positionms
(0) of the

unperturbed problem—it has been obtained by evaluating
integrals in Eq.~35!. The second term is thek expansion of
the driving-induced shifts(v), i.e., s(2k)(v)}k2k ~note the
distinct designation for the iteration expansion of the sh
and thek expansion!. The lowest order~in k! reads
s(2)~v!52 lk2
1

2cosh2~ la !

r1~v!sinh@2lar1~v!#1r2~v!sin@2lar2~v!#

@r1
2 ~v!1r2

2 ~v!#$cosh@2lar1~v!#1cos@2lar2~v!#%
. ~51!
ned
Here we have used the abbreviationsr6(v)5@(V211)1/2

61#1/2/A2, and V5v/(Da2) is the temperature-reduce
frequency. Finally, the oscillatory part in Eq.~50! includes
both odd and even harmonics. The amplitudes of even~odd!
harmonics are even~odd! functions of the parameterk.
The linear-response part of the last term contributes to
linear response. Quite explicitly, the linear-response of
system is
e
e

ms
( lr )~ t !5 l Fcoth~2la !2

1

2laG
1

ak

sinh~2al !
uM ~ iv!ucos@vt2F~v!#. ~52!

The phase delay of the output behind the input is determi
by the relations sinF(v)52Im@M (iv)#/uM (iv)u and
9-10
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cosF(v)5Re@M (iv)#/uM (iv)u. Here Re@M (z)# and
Im@M (z)# are the real and imaginary parts of the functi
~45!, respectively.

Summing up, the exact stationary output exhibits perio
oscillations around the valuems

(0)1s(v). The driving-
induced shift is always opposite to the forceF; it is an odd
function of the force, and an even function of the perturb
tion parameterk. Figure 5 demonstrates its variations wi
changing temperature and/or the unperturbed slope of
potential. We have chosen special values of the parame
so that the shift shows off resonancelike features. The pea
caused by the synchronization of the driving and the ti
scales which control the unperturbed dynamics. The la
time scales are controlled not only by temperature but a
by the forceF and by the width of the diffusion region 2l .

Let us perform the time average of the stationary outp
Then all the terms which oscillate around zero will be
moved. What remains is the sum of the unperturbed equ
rium valuems

(0) and the driving-induced shifts(v). We can
ask the following question. What time-independent for
sayFs , should be added to the original forceF to induce the
new equilibrium positionms

(0)1s(v)? This force has purely
dynamical origin. It can be explicitly calculated by solvin
the equation

cothS lF

GD D2cothF l ~F1Fs!

GD G52 ls~v!1
DGFs

F~F1Fs!
,

~53!

which originates from the expression for the unperturb
equilibrium mean position. ForF,0, the forceFs is posi-
tive, i.e., it acts against the original unperturbed force.

On the whole, the input with vanishing time average ge
erates an effective temperature and frequency-depen

FIG. 5. The driving-induced shifts(2) as a function of the noise
intensity D and the potential slopeF. The calculation is based o
Eq. ~51!. We took the amplitude of the step-height functionK
50.01 J, the frequency of the step-height modulationv
50.5 rad s21, and the half-width of the whole diffusion regionl
50.3 m.
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force. The explanation of the effect is simple. The additio
energy comes from the external system which creates
driving. It is only due to the absence of a global equilibriu
that a part of this energy is constrained within the diffusi
system and prevented from being dissipated in the reser

IV. CONCLUDING REMARKS

In the present paper, the external driving of a diffusi
particle has been mimicked by a special device which s
allows for an exact analysis and which reflects all the pe
nent aspects of the dynamics. We have introduced a s
matic potential which is modulated at a given point by a s
of a time-dependent height. Differently speaking, the diffu
ing particle encounters at the given point a semipermea
boundary with externally controlled time-dependent perm
ability.

Having assumed the sudden jump of the potential at
point x5s, the force in Eq.~1! exhibits ad-function singu-
larity. One encounters the well-known problem with an i
terpretation of the productd(x2s)G(x,y;t) @23#. Our way
of treating the potential step is effectively equivalent to a
cepting the Stratonovich interpretation of the above produ
Differently speaking, the step is considered as a limiting c
of a continuouspotential which undergoes an abrupt chan
in the domain (s2D,s1D). The limit D→0 is implicitly
assumed as being the last limit in the calculations.

The analysis of our specific examples has been base
exactly solvable linear potentials. However, the method its
has been developed in a general frame. Thus it is possib
combine, e.g., the parabolic potential or aW-shaped profile
with the device of time-dependent jumps. The built-in asy
metry of the unperturbed problem has been shown to ind
a shift in the time-averaged output signal. A possible ap
cation of the result is related with the explanation of t
driving-induced shift occurring in ferroelectric systems@24#.

As mentioned above, the idea of the time-dependent ju
of the potential has been pioneered in Refs.@20,21#. In the
work in Ref. @21#, the authors analyze the time-asympto
current in a problem with periodic boundary conditions. U
ing the matching condition in the same spirit as in the pres
work, they avoid the Laplace-transform method and th
concentrate directly on the stationary regime. At the sa
time, they invoke the perturbation-like treatment of t
jump-modulation amplitude. The present calculation co
firms several important features of the results in Ref.@21#.
For example, the time-asymptotic characteristics of the
fusion dynamics are necessarily of form~41!, i.e., they must
contain a fundamental frequency and its higher harmon
Second, the external frequency enters the results o
through the combinationA(v/D). However, besides a pos
sibility to analyze the transient effects~which is usually not
so important!, we feel that the present analysis is capable
a more detailed treatment of the harmonics amplitudes
phase shifts. Moreover, the Fourier analysis of the numer
solution of the integral equation yields the exact values
these quantities. This feature could be quite important in
strong-driving regime, when, e.g., the direction of the tim
averaged asymptotic current can display counterintuit
9-11
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properties and a nontrivial temperature dependence.
An interesting issue connected with our asymmetric pr

lems would be an attempt to find the exact solution of
occurring Volterra integral equation. The full characterizati
of the resonance effects would necessitate the spectral a
sis of the output signal, i.e., the calculation of the signal-
noise ratio, of the spectral power amplification, etc. One
also focus on the two-time correlation function of the pa
cle’s position whose Fourier transform yields the outp
power spectrum. Within our setting, all these quantities
accessible and calculations are in progress.

In summary, our analysis of the physically transparent a
exactly treatable examples evidences again the constru
nd

i-

v.

n-

A

06610
-
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ly-
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role played by the noise in the nonlinear dynamics of driv
systems.
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