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We investigate the one-dimensional diffusion of a particle in a piecewise linear potential superimposed with
a step of a harmonically modulated height. Employing the matching conditions, we solve the corresponding
Fokker-Planck equation and we analyze nonlinear features of the particle’s mean position as a function of time.
We present detailed results in two physically relevant cases. First, we take the unperturbed potential as a
symmetrical up-oriented tip, which is placed between two reflecting boundaries and we add the jump at the tip
coordinate. The setting yields resonancelike behavior of the stationary-response amplitude. Second, if the
discontinuity at origin is combined with the constant force in the symmetrical region between the boundaries,
the stationary response displays a time-independent shift against the potential slope. The driving-induced force
exhibits a resonance-like behavior both with respect to the diffusion constant and the slope of the unperturbed
potential.
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[. INTRODUCTION time-dependent perturbation influences the original potential
just within a very narrow region around a given point. In
The dynamical behavior of an overdamped Brownian parbrief, we add a step with time-dependent height. It will be
ticle acted upon by the thermal force and moving in a fixedshown that such a device still keeps all the pertinent aspects
potential landscape is a well understood classical problerof the diffusion dynamics. The results are valid for any form
[1-3]. However, in the last decade, the diffusion dynamicsof time-dependent function which controls the step height
has been reexamined in systems in which the potential ddthis function represents the input signal
pends on time, the modulation being due to additidida- Our second objective is the detailed analysis of two physi-
terministic[4] and/or stochastif5]) dynamical mechanisms cally relevant problems. First, we assume a symmetric
[6]. The new achievements have substantially broadened tt#buble-well unperturbed potential. Adding a harmonically
field. Reference$7,8] are two of the recent reviews which modulated barrier at the origin, we have all ingredients
discuss history, applications, and existing literature withinneeded in a generic stochastic-resonance model. Due to the
the domain. above simplified implementation of the driving process, we
In a paradigmatic setting, consider a particle which dif-are able to calculate the exagtonlineay response of the
fuses in a potential profile and which is additionally actedsystem. The response, which is the mean particle’s position,
upon by a harmonically oscillating force. Then the wholeis not only sensitive to the noise level, but it also displays
potential landscape changes in time and the correspondingsonancelike features with respect to the parameters of the
dynamical equation cannot be solved in closed form. Oneinperturbed potential.
has to invoke an appropriate approximation which typically In many situations the unperturbed potential has no center
assumes a separation of time scales. However, the most iof reflection symmetry. For example, in the studies of the
teresting phenomena within this domain are just based onoise-induced transport in Brownian ratchfdd, the sym-
time-scale matching conditions and their description requiresnetry breaking has been identified as a key cause for getting
a nonperturbational approach. Any exactly solvable diffusiora directed probability current. In our second example, we
model with a time-dependent potential is of a considerableonsider tworeflecting boundaries, symmetrically located
value even if it is only as a test of existing approximative with respect to the origin, and a linear potential in between.
treatments. Obviously, in a time-independent potential, the mean coordi-
In the present paper, we have two objectives. First, on theate relaxes to a definite temperature-dependent equilibrium
methodological side, we want to examine a different apwalue. However, it is noa priori clear what happens if we
proach, which allows for a detailed analysis of a broad clasadd the harmonically modulated barrier at the origin. In this
of diffusion problems with time-dependent potentials. In thismodel, we have disclosed a phenomenon, which does not
approach, the price paid for the exact solutions is a simplifiedeem to be covered in the existing literature; namely, the
implementation of the external driving. We assume that theexternal driving with zero time average inducem@nzero
time-averaged shift of the mean coordinate. The shift is ori-
ented against the unperturbed potential slope. Differently
*Email address: chvosta@kmf.troja.mff.cuni.cz speaking, a definite portion of the external-field energy is
"Email address: peter.reineker@physik.uni-ulm.de trapped within the system. Symmetric input is combined
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with the diffusion dynamics and produces an effective force The construction of the unperturbed Green function is a
which “elevates” the particle against the potential force.  well-known procedure. However, in order to introduce an

The paper is organized as follows. In Sec. Il, we introduceappropriate frame for our main problem, we now revise the
the Green function formulation of the problem and we derivecalculation in the following four steps.
basic equations. The basic frame is quite general, i.e., the The basic ingredients are the Green functi@x,y;t)
calculation is valid for any unperturbed potential and for anyand the corresponding probability curre@gx,y;t) for the
form of the input signal. The reading will be useful for re- two problems with the potentiald;(x), i=1,2. Atx,, the
searchers wishing to apply the modulated-step device in thefunction B;(x,y;t) is required to fulfill the same boundary
own settings. The focus here is on the Green function thatondition as that prescribed for the functi@®®)(x,y;t).
represents a complete description of the diffusion processvioreover, one assumes that the natural boundary condition
Starting at Sec. Ill, we restricted the analysis just on thﬂimX#mBl(X,Y:t):O- Similarly,  By(x,y;t) and
par.tlcles mean pos!tlgnjthe output signal .Here we have GO)(x,y;t) have to fulfill the same boundary condition at
derived our most original results concerning the above ton and moreover, one requires lim _B,(x,y:t)=0. The
specific diffusion problems. We give formulas describing the™?’ ' q X0, B2y, '
output and its dependence on the input frequency and amplfirst step consists in the calculation of the functions
tude, on the temperature, and on the parameters of the uBi(x,y;t), andCi(x,y;t), i=1,2.
perturbed potential. The focus is on resonancelike aspects of The second step starts by assuming an appropriate ansatz
the output amplitude and of the above driving-induced forcefor the Laplace transform&(9)(x,y;z) and J©(x,y;2).

Here and below, we always use the notatidz) for the
Il. GENERAL POTENTIAL WITH A TIME-DEPENDENT Laplace transformation of a time-dependent functign);
DISCONTINUITY for clarity, the variables will be always quoted. The proper

form of the ansatz depends on the relative positions of the
In the Brownian-motion-type notation, the Fokker-Planckpoints x, y, and s. For example, ifxe(x;;s) and y

equation for the Green functioB(x,y;t) reads e(x;;s), the assumed form will be designated as
GO(x,y;2), if xe(x;s) and ye(s;x,), we introduce
%G(x,y;t): — aix[ —Do;iXG(x,y;t) GiY(x,y;2), etc. Using this convention, the ansatz reads
LU0t t)] " G{P(xy;2)=Bi(xy;2) +Bi(x,5:2Q0(s.y:2), (3
-= XYt .
Il ox Y G (x,y;2)=B1(x,52)Qi(s.y;2), (4)
HereU(x;t) is the potential, i.e F(x;t) = — (d/dx)U(X,t) is G(Z‘i)(x,y;z)z Bz(X,S;Z)Q(z(i)(S,y;Z), (5)
the corresponding force. The curly-bracketed expression rep-
resents the probability curredfx,y;t). I' equals the particle GO(x,y;2)=By(x,y;2) + By(x,5;2)Q9(s,y;2). (6)

mass times the viscous friction coefficient. The thermal-noise

strength parametdd increases linearly with the temperature, Here Qi(jo)(s,y;z) are the four functions to be specified be-
D=kgT/I'. The initial conditions are imposed at timg  low. Analogous relations express the assumed form of the
=0, i.e., we require lim . G(x,y;t)=4&(x—y). Boundary  probability current{?(x,y;z); we simply replacd;(x,y;z)

conditions will be discussed below. and B;(x,s;z) on the right-hand sideRHS) by C;(x,y;2)
andC;(x,s;z), respectively.
A. Unperturbed problem and its solution In the third step, one invokes the matching conditions

GO(s—€,y;t)=GO(s+¢,y;t) and JO(s—¢,y;t)=3O)(s
+¢€,y;t), which guarantee the continuity of the probability
Hensity and of the probability current at the poinats. Here

is a positive infinitesimal parameter. In the following, we
ways implicitly assume the limig— 0 whenever the limit
yields a well-defined analytical behavior of the resulting ex-
UO(x)=U;(X)[1—O(x—5)]+ U,(X)O(x—5), (2 p_ression. Inserting t_he ansa(ti)—_(6) into t_he matching con-
ditions, one ends with the matrix equation

Let U, (x) andU,(x) be two arbitrary time-independent
and space-continuous potentials. Without any loss of gene
ality, assume that they coincide at=s, i.e., U (S)
=U,(s). As the first preparatory step, consider a combinecgI
space-continuous potential

where O(x) is the right-continuous unit-step function: ) _ Y ) e
0(x)=1 for x=0 and®(x)=0 for x<0. The analysis of Bi(si2)  —Ba(s;2)| [ Qir(syiz) Qu2(s)y;2)
the diffusion in this potential will be referred to as the- y1(82) —ya(s2))\ QQ¥(s,y:z) QQ(s,y;2)
perturbedproblem. Its solution consists in finding the Green

function G(®(x,y:t), which solves Eq(1), and in calculat- _ [ ~Bu(syiz) Ba(sy;z)

ing the corresponding probability curredt?(x,y;t). The “l=cyusyiz) Cusyiz))

problem must be supplemented by some boundary condi-

tions. Typically, one assumes a definite type of boundanHere we have introduced the abbreviatighgs;z) =B, (s
conditions, e.g., reflecting or absorbing conditions, at two—e,s;z), B,(s;z)=B,(s+¢€,S;2), v1(S;2)=C1(5—€,S;2),
pointsx;<<s andx,>s. and y,(s;z) =C,(s+¢€,s;2z). These four functions shall be

(7)
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called the matching functions.
original diffusion processef.e.,
Ui(x), i=1,2] in the vicinity of the pointx=s. Note that
their combination

B1(S;2) v2(S,2)

XSz == S m(s)”

®)

displays an extremely important property; nameys;z)
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In fact, they describe the again J(s—e,y;t)=J(s+¢€,y;t) and can be immediately
those with the potentials Laplace transformed. However, as for the probability density,

the jump conditior{9] implies the relationshif(s— e€,y;t)
=£(t)G(s+e,y;t), with &(t)=exg —2Ut)/(kgT)]. Here
comes the principal difficulty. The latter condition cannot be
easily Laplace transformed and the subsequent analysis must
be carried out in the time domain. Henceforth we express the
jump conditions using the time-dependent form of the ansatz.
This yields a matrix integral equation

=1 if and only if the pointx=s represents the center of
reflection for the unperturbed problem. Actually, in this case,
one hasB(s;t) = B,(s;t) and y,(s;t)= — y,(s;t).

It is now a matter of simple algebra to solve the matrix

ft(ﬁl(S;t_t,) —E(t)Bz(s;t—t’))
ol yi(sit—t") —ya(sit—t')

equation(7) for Q{?(s,y;z). Performing this fourth step, Qu(s,yit’)  Qus,y;t’)
one arrives at the frnal_ form of the Laplace-transformed un- Qu(s,yit)  Quusyit))
perturbed Green function:
Bixs) [ x(si2 [ ~Ba(syi)  &(1)Ba(syit) "
) o ) 1(X,85;Z X(S;Z | =Cy(syit) Ca(s,y;t) |
Gll (nyrz) Bl(xayrz)+ 1+X(S,Z)l B (S ) l(s y Z) 1 y 2 y
Of course, it is always possible to writé(t)=1—-[1
—;Cl(s y'z)] (9) — &(1)] on the both sides of the equation and thus introduce
v1(s;2) ) a partitioning of the unknown functionsQ;;(s,y;t)
=Q{"(s,y;t) + Q{M(s,y;t). The perturbed part will be pro-
(0)(x 2)= Bi(x,s;2) X(S'Z) (s.y:2) portronal to[1— g(t)] i.e., it will vanish for the continuous
Y: 1+ x(s;2) ,81(5 Z) BalS:y; potential. The unperturbed part is known from the preceding
section. Hence it is possible to derive the integral equations
for the perturbed matriQ*)(s,y:t) alone. Two of the four
+——=Cy(s, 10
v1(8;2) 28 Z)] (10 ensuing equations do not depend &(t). They can still be

Ba(x,s;2) .
Tt x(si2) | " Ba(sip) PHSY?

GO(x,y;2)=

%Q(SMZ)], (12)
B,(X,s;2)
(0) PN . 2 _ .
GZZ (X,y,Z)— BZ(X!yrz)+ 1+X(S;Z) ( BZ(S;Z) BZ(slylz)
X3 Gy z)} (12

B. Time-dependent discontinuity

We now supplement the unperturbed potent&lwith a
time-dependent discontinuity at=s. The height of the step
will be controlled by a prescribed function, sbl(t). Alto-

Laplace transformed and then used to eliminate two un-
known functions. Namely, we have

Psyi2)= 71Es Z;Q(”( 5.Y:2),
Wsyn- L2 00fsya. a9

After the elimination, the problem is reduced to the solution
of just two \olterra integral equations of the second kind.
Introducing the transformations

1+
Wy(syi2) =~ Bi(s2) D Qs yi2),
1+
Wals.yi2)=—Balsid) oD osyiz), (19

X(s;2)

gether, we are faced with the diffusion problem in the time-
dependent potentidthe factor 2 on the RHS is introduced the integral equations assume a fairly compact final form

for later conveniende

U(x;t) =[U1(x) +2Us(1) 1= O(x=5) ]+ U(X)O (X ~5).
(

13

We want to calculate the Green functi@x,y;z) which
solves Eq.(1) with potential(13).

t
Wi(s,y;t)— ¢(t)f0 P(s;t—t)Wi(s,y;t")dt’

= ¢(HRi(s,y;1). (17
The kernelK(t,t")=@(t)¥(s;t—t’) is a product of two

The first two steps of this calculation are identical as befunctions. The first onep(t) =tanijU4t)/(kgT)] is the only

fore. We assume the forn(3)—(6) with Gj;(x,y;z) and
Qij(s.y;2), instead ofG{”(x,y;z) andQ{(s,y;z), respec-

function through which the time-dependent jump of the po-
tential enters all the subsequent results. This function also

tively. The matching condrtion for the probability current is modulates the RHS of the integral equation.
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The Laplace transform of the second factor reads tion ¢(t) in the integral equatior{17) assumes the form
¢(t)=tanH k cost)]. Here the dimensionless parameter
W(s:2)= [1-x(s;2)]  Ba(S;2) v1(S;2) + B1(S;2) y2(S;2) =K/(kgT) measures the temperature-reduced amplitude of

T [1+x(s:2)]  BaAS;2)yi(S;2)— Bi(S;2) va(S:2) the input signal and will be considered as the perturbation
(19 parameter. The functiog(t) can be expanded in powers of

. N . . . the parametek. However, it is also possible to write it as a
This combination of the matching functions describes the,sum of odd harmonics. Actually, we have

asymmetry of the unperturbed problem. In problems with a
center of reflection, one hag(s;z)=1, and hencea/(s;t) o
=0. In these situations, the solution of the integral equation d(t)= > b (k)cog wyt)
collapses taN;(s,y;t) = (1) Ri(s,y;t). k=1

On the RHS of the integral equation, Ed.7), we have 3 K5
introduced the functions =k——+——---
K 16+ 192 coq wt)
1 Bi(s;2) 3 5
o — ey . P P
19 48 384
¥(s:2) Bo(s:2) with w,=(2k—1)w. Note the k expansion of the ampli-
Ry(s,y;2)= 1+—[ B,(S,y;z)— —sz(s,y;z)]. tudes¢,(x) starts with the term proportional te?< 1.
x(s:2) Y2(812) In connection with the above mentioned focus of the

(20 present paper we now introduce three additional assump-
Fina”y7 the transformations]_ﬁ) have also invoked modifi- tions. First, the diSCOﬂtinUity will be placed at the Origin, i.e.,
cations of the function®;(x,s;z) in the ansatz equations. We sets=0. In order to make the following formulas more
The final result(see below will be formulated by means of transparent, we skip quoting the dependence. dius, e.g.,

the twox-dependent functions x(s;2) in Eq. (8) and y(s;t) in Eq. (17) will be written as
x(2) andy(t), respectively. Second, we shall introduce two
2x(s;z) B4(Xx,S;2) reflecting boundaries at the coordinatgs= —1,<0 andx,
Vi(x,8;2)=— 1+x(s:2) Bi(si2) =1,>0, i.e., the diffusion will be restricted to two neighbor-
ing domains of generally different widths, located to the left
2 B,(X,S;2) and to the right of the origin. Third, we take the potentials
Va(x,s;2)= T+ x(52) BS2) " (2)  Ui(x) in Eq. (2) to belinear, possibly with different slopes.

This means that, while diffusing within the leftight) re-

Let us now summarize the main results of the presen@ion, the particle is acted upon with @nstantforce F,

Section. The target Green function has been partitioned as(F2). For example, iflj—=, i=1,2, andF,;=—F,>0, the
unperturbed problem represents the diffusion in a V-shaped

o ~(0) _ t, _ , " continuous potential with the tip located at the origin.
Gij(x,y:) =G (x,y;t) + fodt Vilx,sit=t)Wi(s,y;t"). At this point, a brief comment is needed concerning our
(22) third assumption. The idea of using the piecewise linear po-
tential to study noise-induced phenomena has been exploited
The unperturbed part describes the diffusion dynamics iy several authors. Diffusion dynamics in the time-
the space-continuous time-independent potent®l Its  independent piecewise linear potential has been studied, e.g.,
Laplace transformation is given by the formulgy—(12). in [10-13. Using the Laplace-transform method, these prob-
The Laplace transformation of the perturbed part can bdéems, including various types of boundaries, are analytically
written as a product of two factors, i.eGi(jl)(x,y;z) tractable. The calculation is more involved, if the slope of the
=Vi(x,5;2)W,(s,y;2). Here Wi(s,y;t), i=1,2, are solu- linear potential depends on time. The additional influence
tions of integral equatiol7), andV;(x,s;z) are defined in  c¢an be eithecoherent(e.g., an external sinusoidal driving
Egs. (21). The results are valid for any form of the unper- Or stochastic(e.g., an intrinsic random modulation of the
turbed potential and for any time-dependent step-heighpotential profilg. In the first case, one possible approach

function U(t). operates with the powerful Floquet theory together with the
eigenfunction treatment of the unperturbed problgt3].

Ill. LINEAR POTENTIALS, REFLECTING BOUNDARIES, Another possibility would be an approximation of the sinu-
AND HARMONIC PERTURBATION soidal signal by a piecewise constant periodic funcfibdl.

Anyway, typically, the coherent-driving models with linear
One of our motivations for the present study was an exacpotentials are not analytically solvable. As for the stochastic
analysis of the nonlinear response with respect to the hamodulation of the linear-potential slope, the setting is often
monically modulated input signal. In our setting, the inputassumed in the analysis of the resonant-activation phenom-
signal is the step-height functids(t). Hence, starting from enon [15-19. In these problems, again, the Laplace-
this point, we take it ad)((t) =K cost), with K being the transform method usually leads to exact results. The strategy
amplitude ando the angular frequency. Thereupon, the func-we shall adopt in the remainder of this paper is as follows.
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The generic features of the problems with coherently modu- 1 N

lated slopes of the linear potentials are preserved if the slopes  Ei(X,y;2)= 2a(2) {=0(y—x)a; (2)e” V0 (2

are fixed and, instead, if one modulates the discontinuity :

connecting the different slopes. The idea of the time- +@(X_y)af(Z)e—(x—y)a((z)}. (29)
modulated discontinuity has been used in R¢&0| and !

[21]. However, these authors operate with piecewise constafioregver, we shall need the four matching functions which

potentials(zero slopg and they invoke_ a perturbationlike appear above Eq. 8. Their present forms read
treatment of the step-modulation amplitude.

Let us now incorporate these assumptions into the equa- [ @l (2) T
tions of the preceding section. We need two Green functions B1(2)= 55 1+ i A(2) ], (30)
B;(x,y;t), and two probability current€;(x,y;t), i=1,2 for ay(2) | ay,(2) ]
the two linear potentialt);(x) = — F;x. As for the potential
U,(x), we assume the reflecting boundaryxat —1; and 1 [ ay(2)
the natural boundary at plus infinity. Similarly, for the diffu- Bo(2)= 2Day(2) 1+ ——N\y(2)|, (3D
sion in the potential ,(x), we place the reflection boundary 2470 a;(2) ]
at x,=1, and the natural boundary at minus infinity. The B
following formulas display the Laplace transformations of (2
the needed functions. n(2)=— 5 ——11-M(2)], (32
1(2)
4
aq(2) _ap (2)
1Z7)= Z) ¥2(2)= 5——[1-Nx(2)], (33
Bi(X,y;z)=D1(X,y;2) + 2Dar(?) a(2) 2 2a,(2) 2
X\ (z)e*X“I(Z)e*V“I(Z) (24) and therefore their combinatid®) is
l L
[a7 (2)+ a7 (DN (D[ 1-\x(2)]
_ 1 1 1 2 (34)

at(z x(z — " - .
B,(x.y:2) = Ds(x.y:2)+ e 22 [ (2)+ a3 (2o ][1-Ms(2)]
2Day(2) g, (2)
Note that this function actually equals unity if and only if the
X )\Z(z)exag(Z)eyaE(Z)’ (25)  two regions have the same width, i.B.=1,, and the slopes
of the linear potentials within these regions are opposite, i.e.,
F]_: - F2.
The functiong23)—(34) yield everything that is needed in
2a4(2) the integral equatioil7). We assume, for the moment, that
- " the integral equation has been solved, i.e., we know the re-
Xayg(2)\y(z)e*1Pev1 () (26)  gulting Green functioG(x,y;t). Then we have the complete
information about the diffusion process. For example, one
1 can inquire, what portions of the total probability mass are,
Co(x,y;2)=E,(X,y;2)— —a;(z))\z(z)exag(neyaz @, at a given time, situated on the rigtdn the lefj from the
2a5(2) origin. However, remembering again our main objective, we
(27 shall concentrate on the calculation of the particle’s mean
. position ,u(y;t)=f'f|ldx X G(x,y;t). This function will be
Here ai(z)=vz/ID+aj, a=Fi/(2DI'), @i (2)=ai(2)  (eferred to as theutput signal Using the partitioning22),
*a, and.)\i(z)zexq—ZIiai(z)]. The Green functions e output signal splits ag(y;t)=x@(y:t) + £ (y:t).
Di(x,y;z)-, i=1,2 and the probgb|llty currentEi(_X,y;Z) The unperturbed part relaxes to a given value which is dic-
are solutions of two problems with linear potentialg(x) tated by Gibb's equilibrium distribution; namely, this
=—Fix and with natural boundary conditions emperature-dependent value is

lim _Di(x,y;t)=0. Thus, Di(x,y;t) simply describes

X— =
the spreading probability-density packet whose center drifts
with constant velocityF;/I". By Laplace transforming

Ci(X,y;2)=E;(x,y;2)+

2 dx xexg —U©@(x)/(kgT)]

I

the corresponding Fokker-Planck equations and then solving 4= lim u(@(y;t)= _,2 :
the emerging ordinary differential equation one easily ob- toe dxexd —U©@(x)/(kgT)]
tains —I1

(39

The potentiald (9)(x) is piecewise linear and hence the equi-
librium mean position can be easily evaluated.

B As for the perturbed part, the results from the preceding
+0(x—y)e” XV« (@A (28)  section lead to the expression

o ~(y-x e (2)
Di(x,y;z)=ZDa,(Z){@)(y—x)e Ym0
I
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t 0 t
,A”(y;t)zf dt’ f dx xVy(x;t—t’) =f dt'M(t—t")Wi(y;t’), (36)
0 —1; 0
+j|2dXXV2(X't—t') Wi(y:t) with V,(x;z) being given in Eqgs(21). The result of the
0 ’ n x-integration reads

a;(z)+a;(z)xl(z)—2a1(z)e*'1a1+<2> a3 (2)+a, (2)\y(2) — 2a5(z)e 222 @
1-N\1(2) " 1-Ny(2)
a; (2)+a; (2)\1(2) . a5 (2)+ a3 (2)\y(2)
1-N(2) 1-N(2)

2D
M(z)= - (37)

We have quoted this complex expression because all the sublere we have already inserted the expangis).

sequent results rest on the asymptotic analysis of the last two In order to simplify the notation, we introduce(z)
formulas. Typically, the perturbed part of the output displays= \z/D+a?, with a=F/(2DI), a*(z)=a(z)*a, and
transitory effects superimposed with the stationary part, i.e.\ (z) =exf —2la(2)]. Hence, comparing with the text below
LY = uidnyi) + 1(D). In the time-asymptotic re- Eq. (27), we have a; (2)=a*(2), a;(2)=a(2), and
gion, the transitory part vanishes and the whole output asx,(z)=X\,(z)=\(z). Using all this in Eq.(37), we get
sumes its stationary formg(t) = u9+ u{(t). The station-

ary output will be shown to display quite remarkable 2D o (2) +N(2)a™(2)—2a(z)e”'* @

features. z a”(z2)+N2)a (2)

A. Stochastic resonance (39

Assumel;=Il,=1 and F;,=—F,=F. The unperturbed Performing a detailed analysis, one can prove that there is no
potential forms a symmetric tip at the origin. The tip points pole of this function at the origin of the complex plane. Fi-
down (up) for F positive (negative, i.e., we can speak about nally, in the present case, the functiofid) and (20) are
V potential (A potentia) with the minimum(maximum at  identical, i.e.,Ry(y;z) =Ry(y;z), their common form being
the origin. Let us concentrate, for the moment, on the up-

directed tip(all the calculation below is valid for an arbitrary _ 1 at(2e M @1 o= (2)N(2)eVe" @
sign of the force Then the linear potentials at both sides of ~ R(Y:2)= 5 1-%2) :
the origin together with the reflecting barriers mimic a (40)

double-well symmetric potential. Adding the time-dependent
discontinuity at the origin, we are faced with an archetypicalThis function displays the first-order pole at the origin.
stochastic-resonance settin@]. During each half period
when the step-height functiob(t) is positive (negative,
the discontinuity acts as a potential barrier for the diffusion
trajectories approaching it from the rigtftom the lefy. In - S )
our setting, the height of the barrier will harmonically oscil- = 2 ..l B
late and Fig. 1 illustrates the space and the time dependencs 15 AT
of the whole potential. 3
As mentioned above, in the present setting, the origin rep-
resents a center of reflection for the unperturbed problem
Consequently, the unperturbed equilibrium probability den-
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me’ in EQ. (35 vanishes. Second, the functinz) in Eq. - : \\\\\§§:\\\\§
\%E 2

(17) vanishes also and Eq&6) simply read 2 ey P~

t
M(l)(y;t):fodt'M(t_t')cb(t')R(y;t')

Position x [m] 05 ;o

” t, , , " FIG. 1. The time-modulated potentibl(x;t) as considered in
:kzl ¢k(K)Jodt M(t—t')codwt’)R(y;t’). this section. We took=1m, F=—1N, o=27 rads !, and K
=0.5J. The two darker planes &t =1 are the two reflecting
(38) walls. The central plane at=0 m is included for clarity.
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We now turn to the calculation of the convolution integral Here &= E2+i10, & =a+sgnF)=, and X =exp(a).
in Eq. (38). Upon writing cosfyt) as a sum of two exponen- \we have introduced two important dimensionless param-
tial_s, the formula(38) can be Laplace_transforr_ned and we gters. First, E=2l|a|=I|F|/(kgT) represents the
arrive at thg problem of the a§ymptot|c behavior of a func'temperature—reduced height of the potential bartfer F
tion which is known to have first-orders poleszt Ziwx 0y or the temperature-reduced depth of the potential well

due to the termsR(y;z*iw). Introducing an appropriate (for F>0). In the former case, the parameErcontrols the

contour in the complex plane and appl_ylng the res'duunkramers timery for surmounting the unperturbed potential
theorem[22], one can separate the transitory part of the re-

sults(this emerges from the integrals along both sides of thé)arrfr. More precisely, the Kramers “”;e is proportional to
negative imaginary axjsand the oscillatory parstemming eXP(ﬂ) [10). Second_, the parametér=4/“w/D _reﬂects the_
from the residua at the polesThe latter part already repre- ratio between the t!me scale for ghe potential modglaﬂon,
sents the stationary output signal. Skipping all details, thdw*1/@, and the time scalerp=|?/D for the diffusive
final result of the present section reads spreading within the spatial domain-(;l). For example, if
®>1, the external modulation is rapid with respect to the
diffusion, if ®<1, the driving is slow(the adiabatic limit
Equation(43) describes a nontrivial competition between all
ms(t) = kzl Ax(@)cog oyt =W (w)]. (41)  the three time scales. Further discussion will be given below.
To illustrate our results, in Fig. 2, we shall first focus on

In words, the time-asymptotic output signal contains the funihe particle’s mean position and present several typical fea-
damental frequency and its odd harmonics. The amplitudéures. The data were obtained by the numerical Laplace in-
A(w) is proportional to the perturbation facteg(«). Apart ~ Vversion of the function}(y;z), Eq. (40), and M(z), Eq.
from this dependence, the amplitudes and the phase shifts af@9), followed by the numerical evaluation of the convolu-
controlled by just two generic functions which are evaluatedion integral in Eq.(38).
at the equidistant pointsk_ More precise|y, we have As follows from the preceding calculation, i1, the
output displays highly nonlinear features. In the strong driv-
ing regime, the coefficients), (w) are not negligible and
a thus the output contains higher harmonics. This can be also
Aw(@) = ¢ (k) ——~[M(iwy)], seen in the spectral analysis of the output. Let us briefly
1-e discuss the four panels in Fig. 2.

Panel(a) demonstrates a typical form of the transitory
effects. Of course, they are not present in the linear-response
ATV TR curve, as this curve is already calculated in the asymptotic-

IM(iwy)| time limit. Panel(b) compares two curves evaluated for the
(42 two different temperatures. The remaining parameters were
) ) . tuned in such way, that the comparison shows up the stochas-
REM(2)] and InfM(2)] being the real and the imaginary tic resonance effect; namely, liycreasingthe temperature,
part of the function(39), respectively. The combination there occurs a synchronization between the temperature-
2l[a=1|F|/(kgT) represents the(negative temperature- jnduced interwell transitions and the input signal. As a result,
reduced height of the potential tip for the unperturbed probyhe amplitude of the periodic outpiricreases No such in-
lem. ) . . crease can occur in thépotential model. Pandt) demon-

Remembering that the expansion of the functio(«<)  strates that the increase of the output amplitude can also
begins with the powek®~*, Eqgs.(41) and(42) contain the  occur by increasing the unperturbed barrier height. For
linear-response output. Actually, in the linear response, theyegative, this is not surprising as the increase of the potential
terms withk>1 in Eq. (41) are not considered and, in the parrier |F|l is effectively equivalent with a decrease of the
first term, we taked,(«)~«. Thus the linear response is temperature. Pandtl) displays typical differences between
simply given by phase-shifted oscillations with the funda-the diffusionV-shaped and\-shaped unperturbed potential.

mental frequency. We now write the linear-response ampliin the first case, there is no potential barrier and hence the
tude in a form which will be well suited for a further analy' instantaneOUS, e_g_, positive, value of the |n[1ug(t)

[

IM[M (iwy)] R M(iwy)]

sin‘lfk(w)=—W, cosV (w)=

sis. The form reads =K cos(t) leads to an immediate motion of the probability
mass to the right. Contrary to this, having a potential barrier

4K =2 in the unperturbed potential, the stationary output displays

A (@)= _[+ a significant phase delay with respect to the input.
|F| lexp(E)—1 Let us now return to the discussion of resonances. Our
_— et e — analysis will be based on E¢3) and we consider, first, the
x 1la"+ra” —2aexp—a /2)‘ caseF <0 (i.e., theA-shaped unperturbed potentiaDn the

() at NG ‘ RHS we recognize a product of two functions. The first one,

A(E)=E2?(expE)—1), displays maximum at the point
:ﬁA (2)A,(E.0) 43) E* which solves the equation-lexp(—=)=E/2, i.e., E*
|F| R €(1,2). If we treat4,(E) as a function of the noise inten-
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° o
o = N
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-0.2
-0.3

-0.4

Time t [s] Time t [s]

FIG. 2. Time dependence of the particle’s mean position. In all panels, the input frequeney2is rads t, I'=1 kgs'!, and the
initial position isy=—0.3 m. Panela compares the exact solutidfull curve) with the corresponding linear-response regbloken
curve. For both the curves, the parameters@re1.0 n?s %, F=—-0.5 N,|=2.0 m, ancK=1.0 J. Panelb) demonstrates the increase of
the output amplitude with increasing temperature. The full linehasL.0 n? s 2, and the broken onB=23.0 n? s~ . Otherwise, we took
F=-0.5N,1=1.0 m, andKk=10.0 J. Panelc) exemplifies the increase of the output amplitude with increasing the unperturbed barrier
height. Here we seF=—0.05N (full curve) and F=—10.0 N (broken curvg Otherwise, we us®=1.0 nfs !, 1=0.3 m, andK
=10.0 J. Paneld) illustrates typical differences between the dynamics in the monostable and in the bistable model. The full curve
corresponds to\-shaped potential with-=—5.0 N, and the broken one té-shaped potential with-=10.0 N. Both curves hav®
=1.0nfs % 1=0.6 m, andk=10.0 J.

sity, the maximum occurs atD*, where D~ the frequencythe lower the period of the driving signathe

e (I|[F|/(2I),lI|F|/T). The valueD* does not depend on the higher D,(w), i.e., also the lower Kramers timg,. We
frequency of the potential modulation. However, due to thethus recover the basic condition for tiestochastic reso-
second factor in Eq43), the position of the maximum of the nance[7]: the statistical synchronization occurs when the
productA,(E).A4,(E,0) is shifted with respect to the above average waiting time between two noise-induced interwell
value,D*. Actually, the second factad,(=E,0) is a com- transitions is comparable to the period of the driving signal.

plicated function of the two variables indicatéthey both Figure 3 shows the linear-response amplitude as a func-
are inversely proportional t®), but it displays finite non- tion of the temperature and the slope of the unperturbed po-
zero limits tential. A similar peak has also been detected if the amplitude

is displayed as a function of the widthGenerally speaking,
besides on the frequency, the output amplitude depends on
lol’ all further parameters, i.e., d&, F, DI'=kgT, andl. At the
2[F]) | same time, due to the rather complicated structure of Eg.
(44) (43), the analytic expressions for the maxima would not be
very illustrative.
The resonance iB occurs only ifF<0. Contrary to this,
On the whole, the linear response amplitud®) displays keeping the temperature and the other parameters constant,
maximum at some point, say &g,(w). Heuristically, if  the resonance iR can occur also for a positiie. The physi-
»<0.5 (0>0.5), the true maximunDy,(w) is shifted with  cal essence behind this effect is as follows. We assume first a
respect toD* towards lower(highep values of the noise sharp slope of th¥-shaped unperturbed potential. Due to the
intensity. There is no simple analytical relation which would large “attractive” force, the particle cannot migrate far from
describe this frequency dependence. Qualitatively, the highehe origin and the amplitude of its mean-position oscillations

F2
lim A,(E,0)=

D—o

, lim Ay (E,0)=

sin
D0 2120%T2

®| =
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FIG. 3. The linear-response amplitude as a function of the dif- £ 4. The time-modulated potentibl(x:t) as considered in
fusion constanD and the potential slopE. In the calculation, we  his section. We took= 1 m, F=—1N, w=2m7rads !, andK

took the amplitude of the step-height functitd=0.001J, the _(5 3 The two darker planes at+| are the two reflecting

frequency of the time-dependent potential contributian  \yg)is. The central plane at=0 m is included for clarity.
=0.5rads?, and the half-width of the whole diffusion regidn

=0.3 m. For a positivé-, i.e., for theV-shaped unperturbed poten-

. , ; ) Therefore the potential for the unperturbed problem is
tial, there is no resonance with respect to the vari@hle

simply a straight line in the symmetric diffusion domain of
. IS d flat mini £ th total width 2. If F<0 (F>0), the force pushes the particle
IS small. Second, we assume a fial minimum of the unperé\gainst the lef(right) boundary. The equilibrium mean po-
turbed potential. Then the particle performs relatively large,

. _— . sition for the unperturbed problem is given below, c.f., the
excursions from the origin. However, the excursions OCCUKi ot term on the RHS of Eq50). It is an odd function of the

symmetricallyto both sides from the origin and hence theyforce, and it has the same signfasWhat happens if we add

do not contribute to the mean position. Only a small portiony, oscillating discontinuity at the origin? One feels that the

of the prc_JbabiIity density in the vicin_ity c_Jf the origin is non- stationary response should again display sdmanlineay
symmetrically a_ffected by the .OSC'"at'ng barr_le_r. Qn th(_a‘oscillations. However, arounghatvalue? This is the central
whole, the amplitude of the particle’s mean position is aga"buestion of the present section

smgll. In conclgsion, there must exist.an “optimal” sllope for ProvidedF #0, the unperturbed problem has no center of
Wh'Ch. the amplltudg assumes Its maX|m§1I va!ue. This reasofafiection symmetry, the combinatidB4) is no longer zero,
ing yv_|ll only be valid if the width of the diffusion domain is and we are faced with the integral equatid) in their full
sufficiently large. form. We start again by calculating the present form of the

The resonance peak in the variableas a similar origin. ' . :
; function (37). Introducing a(z)=z/D+a? with a
We assume a negativieé and a smalll. Then, because of —F/(2DT), a*(2)=a(2)+a, and A(2)=exd—2a(d)],

urely geometrical reasons, the output amplitude must be + v ¥
gmall)./ Ir? the opposite case, i.e., assur?ﬂng a spufficiently broalf€ Naveay(2)=ax(2)=a(2), a1 (2)=a; (2)=a"(2), and
diffusion region|a|l>1, a significant part of the probability A1(2)=A2(2)=A(2). Using all this in Eq/(37), we arrive at
mass issymmetricallydistributed in domains that are far a quite fransparent expression
from the origin(i.e., close to the reflection boundane®nly
a small portion of the probability density in the vicinity of 2D
the origin is nonsymmetrically affected by the oscillating M(Z)ZT
barrier. The corresponding contribution to the integral defin-
ing the mean position is also small. In conclusion, there must
be an optimal width for which the amplitude assumes itsA detailed analysis shows that there is no pole of this func-
maximal value. For positiv€ this reasoning goes to certain tion at the origin. Next, focusing on the integral equation
critical value of the collecting force. Above this value, no (17), on the RHS we have
resonance irh occurs.

All these heuristic conclusions were confirmed by the ex- _
plicit evaluation of the output amplitudd3). 1 a™(2)+N(2)a™(2)

coshla)

 coslila(2)]]" (45)

Ri(Yy;2)=— a*(z)e Ve @
VD=2 i) |
B. Driving-induced force ylet ()
+ Yla—(z
In this section, we take again=1,=1, but now letF, Tat(2M2)e 1 (46)
=F,=F. Figure 4 illustrates the space and the time depen-
dence of the potential in this case. where the upperthe lowe) sign is valid fori=1, i.e.,
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y<0 (for i=2, i.e.,,y=0). Finally, the expressiofl8) in

the kernel of the integral equatidi?) reads[22] Here comes the crucial point. We write again the function

cos(mt) and cosp,t’) as sums of two exponentials, and we
carry out the Laplace transformation. The terms witk n
have poles at=iw,,*iw,. Asymptotically, they contribute

W(2)=— (z) tanfla(z)]= (1) to the oscillatory part of the output. However, one part of the
diagonalm=n terms leads to the compensation of the two
o~ Da%t pole shifts in the expressidR (y;z+ o, iw,). As a result,
— —sgna)Da these terms will have pole at the origin of the complex plane.
JmDa?%t Inserting these terms into the convolution in E§6) and
using the residuum theorem, we end with an asymptotically
* |2 surviving, nonoscillatory term
X[ 142> (—1)“exp(—n —) (47)
n=1 Dt -
Sy w)= 2 (KR iom)]. (49
The kernel displays d@t=0 a weak singularity of the form (@) 2cosH(la) mzl PnlORLY(lom)]. (49
(t)c 1\ 7Dt.

We now start with the iterative solution of the integral The lower index reminds that we are discussing the contri-
equation(17). Formally, let the kernel be proportional to a bution which is linear in the parametér However, at the
parameter, say. Then the Neumann series for the solution issame time, the expression is even in the perturbation param-
S oW o (Yst), whereWi,(k)(y;t)ocgk. The zero-order term  eterk. Its k expansion starts with thguadraticcontribution.
is simply given by the right of the integral equation, i.e., In a similar way, we can analyze the higher-order itera-
Wi 0)(y;t)= &(t)Ri(y;t). Inserting this term in Eq:36) and  tions of the integral equation. Without going into details, let
using the same steps as in the preceding section, we ggs now collect all the findings into one final formula. In the
again a sum of odd harmonics, their amplitudes being propresent symmetry-broken setting, the stationary output signal
portional to ¢ («). At the same time, this is the only term reads
which contributes to the linear-response outfibie explicit
form of the linear-response output is given in E§2) be-

low]. ps(t)=1| coth(2la) - 5 +2 s (w)
Next, let us consider the first iteration of the integral
equation. We integrate the kerni€(t,t’) multiplied by the .
zero-order resuliV; y(y;t). Inserting the mode expansion
of the functiong(t), we have to calculate +k21 S(w)cogkat—dy(w)]. (50

The first term is the equilibrium mean positiorl® of the
Wi () (V)= 2 > (k) d( K)COL wiyt) unperturbed problem—it has been obtained by evaluating the
m=1n=1 integrals in Eq.(35). The second term is the expansion of
t the driving-induced shifs(w), i.e., ¥ ()= «x?* (note the
Xf dt’ g(t—t")cog w t R (y:t'). (48) distinct deS|gnat|_on for the iteration expansion of the shift
0 and thek expansioin The lowest ordefin «) reads

$@(1) = — I k2 1 p+(w)sinf2lap, (w)]+p_(w)sin2lap ()] 51
2costi(la) [p2(w)+p?(w)]{coshi2lap*(w)]+cog2lap (w)]}

Here we have used the abbreviatigns(w)=[(Q?%+1)2 |
+1]Y%2, and Q=w/(Da?) is the temperature-reduced pi(t) =1
frequency. Finally, the oscillatory part in E¢G0) includes

both odd and even harmonics. The amplitudes of €veld)

harmonics are everfjodd) functions of the parametek. smk(ZaI)
The linear-response part of the last term contributes to the

linear response. Quite explicitly, the linear-response of théhe phase delay of the output behind the input is determined
system is by the relations si®(w)=—IM[M(iw)]/|M(iw)| and

2l !
coth(2la ~ %

[M(iw)|cof wt—P(w)]. (52
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force. The explanation of the effect is simple. The additional
energy comes from the external system which creates the
driving. It is only due to the absence of a global equilibrium
that a part of this energy is constrained within the diffusing
system and prevented from being dissipated in the reservoir.

IV. CONCLUDING REMARKS

W\ In the present paper, the external driving of a diffusing

particle has been mimicked by a special device which still
allows for an exact analysis and which reflects all the perti-
nent aspects of the dynamics. We have introduced a sche-
matic potential which is modulated at a given point by a step
; of a time-dependent height. Differently speaking, the diffus-
Force F [N] 02 oo T ing particle encounters at the given point a semipermeable
boundary with externally controlled time-dependent perme-
ability.
Having assumed the sudden jump of the potential at the
point x=s, the force in Eq(1) exhibits as-function singu-
—001J, the frequency of the step-height modulation larity. One encounters the well-known problem with an in-

=0.5rads?, and the half-width of the whole diffusion regidn terpreta_ltion of the prpduaﬁ(xfs)G(x,_y;t) [23]._Our way
-03m. of treating the potential step is effectively equivalent to ac-

cepting the Stratonovich interpretation of the above product.

cosd(w)=RgM(iw)/[M(iw)|. Here REM(z)] and Differently speaking, the step is considered as a limiting case
IM[M(2)] are the real and imaginary parts of the functionOf a continuouspotential which undergoes an abrupt change
(45), respectively. in the domain $§—A,s+A). The limit A—O0 is implicitly

Summing up, the exact stationary output exhibits periodic""ssumed as peing the last I.ir_nit in the calculations.
oscillations around the valug©+s(w). The driving- The analysis of our specific examples has been based on

. e . o exactly solvable linear potentials. However, the method itself
induced shift is always opposite to the forEgit is an odd : . .

: : has been developed in a general frame. Thus it is possible to
function of the force, and an even function of the perturba- ; ) ; .
. i X L . combine, e.g., the parabolic potential oi\ashaped profile
tion parametek. Figure 5 demonstrates its variations with - : : . o

. with the device of time-dependent jumps. The built-in asym-
changing temperature and/or the unperturbed slope of the :
. . metry of the unperturbed problem has been shown to induce
potential. We have chosen special values of the paramete([isshift in the time-averaced output sianal. A possible appli
so that the shift shows off resonancelike features. The peak IS . erag put signal. A poss PP
o - . Cation of the result is related with the explanation of the
caused by the synchronization of the driving and the time . =~ . o "
. . driving-induced shift occurring in ferroelectric systef4].
scales which control the unperturbed dynamics. The lattef . . - .
! As mentioned above, the idea of the time-dependent jump
time scales are controlled not only by temperature but alsg . . .
: e ) of the potential has been pioneered in R¢2),21]. In the
by the forceF and by the width of the diffusion regionl 2 . . .
. . work in Ref.[21], the authors analyze the time-asymptotic
Let us perform the time average of the stationary output, , : - o
Then all the terms which oscillate around zero will be re current in a problem with periodic boundary conditions. Us-
moved. What remains is the sum of the unperturbed equilibing the matching condition in the same spirit as in the present
fum value,ugo) and the driving-induced shifi(w). We can work, they avoid the Laplace-transform method and they

. . N concentrate directly on the stationary regime. At the same
ask the following question. What time-independent force y y reg

o ) time, they invoke the perturbation-like treatment of the
sayFs, should be added to the original foredo induce the jump-modulation amplitude. The present calculation con-

new equilibrium positiom§°)+s(¢9)‘? This force has purely fims several important features of the results in 2.
dynamical origin. It can be explicitly calculated by solving gor example, the time-asymptotic characteristics of the dif-

O
’ll' =

FIG. 5. The driving-induced shi&® as a function of the noise
intensity D and the potential slopE. The calculation is based on
Eq. (51). We took the amplitude of the step-height functiéh

the equation fusion dynamics are necessarily of fof#l), i.e., they must
contain a fundamental frequency and its higher harmonics.
Second, the external frequency enters the results only
IF [(F+Fy) DI'Fg C .
cot ol "N —Fp |~ —Is(w)+ =—=—=———, through the combinatior/(w/D). However, besides a pos-
D D F(F+Fy (59 sibility to analyze the transient effecahich is usually not

so important, we feel that the present analysis is capable of
a more detailed treatment of the harmonics amplitudes and
which originates from the expression for the unperturbedphase shifts. Moreover, the Fourier analysis of the numerical
equilibrium mean position. FdF<0, the forceF is posi-  solution of the integral equation yields the exact values of
tive, i.e., it acts against the original unperturbed force. these quantities. This feature could be quite important in the
On the whole, the input with vanishing time average gen-strong-driving regime, when, e.g., the direction of the time-
erates an effective temperature and frequency-dependeaveraged asymptotic current can display counterintuitive
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properties and a nontrivial temperature dependence. role played by the noise in the nonlinear dynamics of driven
An interesting issue connected with our asymmetric probsystems.

lems would be an attempt to find the exact solution of the

occurring Volterra integral equation. The full characterization ACKNOWLEDGMENTS
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